Entanglement dynamics of two qubits coupled individually to Ohmic baths.
نویسندگان
چکیده
Developed originally for the Holstein polaron, the Davydov D1 ansatz is an efficient, yet extremely accurate trial state for time-dependent variation of the spin-boson model [N. Wu, L. Duan, X. Li, and Y. Zhao, J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime finite-time disentanglement is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement disappearance and revival.
منابع مشابه
Super operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملDynamics of the sub-Ohmic spin-boson model: a comparison of three numerical approaches.
Dynamics of the sub-Ohmic spin-boson model is examined using three numerical approaches, namely the Dirac-Frenkel time-dependent variation with the Davydov D(1) ansatz, the adaptive time-dependent density matrix renormalization group method within the representation of orthogonal polynomials, and a perturbative approach based on a unitary transformation. In order to probe the validity regimes o...
متن کاملNon-Markovian entanglement dynamics in the presence of system-bath coherence.
A complete treatment of the entanglement of two-level systems, which evolves through the contact with a thermal bath, must include the fact that the system and the bath are not fully separable. Therefore, quantum coherent superpositions of system and bath states, which are almost never fully included in theoretical models, are invariably present when an entangled state is prepared experimentall...
متن کاملOn the dynamics of maximum extractable entanglement for open systems
In this work we study the dynamics of the maximum extractable entanglement for a system composed of two qubits interacting either with two independent thermal baths, a common thermal bath or a common squeezed bath. The states with maximum entanglement are found applying filtering operations which transform each state to a state in Bell diagonal form. We observe a revival of the maximum extracta...
متن کاملDecoherence and dephasing in coupled Josephson-junction qubits
We investigate the decoherence and dephasing of two coupled Josephson qubits. With the interaction between the qubits being generated by current-current correlations, two different situations in which the qubits are coupled to the same bath, or to two independent baths, are considered. Upon focussing on dissipation being caused by the fluctuations of voltage sources, the relaxation and dephasin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 139 4 شماره
صفحات -
تاریخ انتشار 2013